Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Astrobiology ; 24(S1): S76-S106, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38498817

RESUMO

Within the first billion years of Earth's history, the planet transformed from a hot, barren, and inhospitable landscape to an environment conducive to the emergence and persistence of life. This chapter will review the state of knowledge concerning early Earth's (Hadean/Eoarchean) geochemical environment, including the origin and composition of the planet's moon, crust, oceans, atmosphere, and organic content. It will also discuss abiotic geochemical cycling of the CHONPS elements and how these species could have been converted to biologically relevant building blocks, polymers, and chemical networks. Proposed environments for abiogenesis events are also described and evaluated. An understanding of the geochemical processes under which life may have emerged can better inform our assessment of the habitability of other worlds, the potential complexity that abiotic chemistry can achieve (which has implications for putative biosignatures), and the possibility for biochemistries that are vastly different from those on Earth.


Assuntos
Planeta Terra , Planetas , Lua , Atmosfera/química , Oceanos e Mares
2.
Life (Basel) ; 13(8)2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37629583

RESUMO

Enceladus and Europa, icy moons of Saturn and Jupiter, respectively, are believed to be habitable with liquid water oceans and therefore are of interest for future life detection missions and mission concepts. With the limited data from missions to these moons, many studies have sought to better constrain these conditions. With these constraints, researchers have, based on modeling and experimental studies, hypothesized a number of possible metabolisms that could exist on Europa and Enceladus if these worlds host life. The most often hypothesized metabolisms are methanogenesis for Enceladus and methane oxidation/sulfate reduction on Europa. Here, we outline, review, and compare the best estimated conditions of each moon's ocean. We then discuss the hypothetical metabolisms that have been suggested to be present on these moons, based on laboratory studies and Earth analogs. We also detail different detection methods that could be used to detect these hypothetical metabolic reactions and make recommendations for future research and considerations for future missions.

3.
Proc Natl Acad Sci U S A ; 120(34): e2210924120, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37579147

RESUMO

The origin and early evolution of life is generally studied under two different paradigms: bottom up and top down. Prebiotic chemistry and early Earth geochemistry allow researchers to explore possible origin of life scenarios. But for these "bottom-up" approaches, even successful experiments only amount to a proof of principle. On the other hand, "top-down" research on early evolutionary history is able to provide a historical account about ancient organisms, but is unable to investigate stages that occurred during and just after the origin of life. Here, we consider ancient electron transport chains (ETCs) as a potential bridge between early evolutionary history and a protocellular stage that preceded it. Current phylogenetic evidence suggests that ancestors of several extant ETC components were present at least as late as the last universal common ancestor of life. In addition, recent experiments have shown that some aspects of modern ETCs can be replicated by minerals, protocells, or organic cofactors in the absence of biological proteins. Here, we discuss the diversity of ETCs and other forms of chemiosmotic energy conservation, describe current work on the early evolution of membrane bioenergetics, and advocate for several lines of research to enhance this understanding by pairing top-down and bottom-up approaches.


Assuntos
Fenômenos Bioquímicos , Filogenia , Transporte de Elétrons , Proteínas/química , Metabolismo Energético , Origem da Vida , Evolução Biológica , Evolução Molecular
4.
Astrobiology ; 22(2): 197-209, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35100015

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous in astrochemical environments and are disbursed into planetary environments via meteorites and extraterrestrial infall where they may interact with mineral phases to produce quinones important for origins of life. In this study, we assessed the potential of the phyllosilicates montmorillonite (MONT) and kaolinite (KAO), and the enhanced Mojave Mars Simulant (MMS) to convert the PAH anthracene (ANTH) to the biologically important 9,10-anthraquinone (ANTHQ). All studied mineral substrates mediate conversion over the temperature range assessed (25-500°C). Apparent rate curves for conversion were sigmoidal for MONT and KAO, but quadratic for MMS. Conversion efficiency maxima for ANTHQ were 3.06% ± 0.42%, 1.15% ± 0.13%, and 0.56% ± 0.039% for MONT, KAO, and MMS, respectively. We hypothesized that differential substrate binding and compound loss account for the apparent conversion kinetics observed. Apparent loss rate curves for ANTH and ANTHQ were exponential for all substrates, suggesting a pathway for wide distribution of both compounds in warmer prebiotic environments. These findings improve upon our previously reported ANTHQ conversion efficiency on MONT and provide support for a plausible scenario in which PAH-mineral interactions could have produced prebiotically relevant quinones in early Earth environments.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Quinonas , Bentonita , Minerais/química , Hidrocarbonetos Policíclicos Aromáticos/química , Quinonas/química
5.
Astrobiology ; 22(1): 25-34, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34591607

RESUMO

Life emerged in a geochemical context, possibly in the midst of mineral substrates. However, it is not known to what extent minerals and dissolved inorganic ions could have facilitated the evolution of biochemical reactions. Herein, we have experimentally shown that iron sulfide minerals can act as electron transfer agents for the reduction of the ubiquitous biological protein cofactor nicotinamide adenine dinucleotide (NAD+) under anaerobic prebiotic conditions, observing the NAD+/NADH redox transition by using ultraviolet-visible spectroscopy and 1H nuclear magnetic resonance. This reaction was mediated with iron sulfide minerals, which were likely abundant on early Earth in seafloor and hydrothermal settings; and the NAD+/NADH redox reaction occurred in the absence of UV light, peptide ligand(s), or dissolved mediators. To better understand this reaction, thermodynamic modeling was also performed. The ability of an iron sulfide mineral to transfer electrons to a biochemical cofactor that is found in every living cell demonstrates how geologic materials could have played a direct role in the evolution of certain cofactor-driven metabolic pathways.


Assuntos
Ferro , NAD , Ferro/metabolismo , Minerais , NAD/química , NAD/metabolismo , Oxirredução , Enxofre
6.
Astrobiology ; 22(4): 481-493, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34898272

RESUMO

The field of prebiotic chemistry has demonstrated that complex organic chemical systems that exhibit various life-like properties can be produced abiotically in the laboratory. Understanding these chemical systems is important for astrobiology and life detection since we do not know the extent to which prebiotic chemistry might exist or have existed on other worlds. Nor do we know what signatures are diagnostic of an extant or "failed" prebiotic system. On Earth, biology has suppressed most abiotic organic chemistry and overprints geologic records of prebiotic chemistry; therefore, it is difficult to validate whether chemical signatures from future planetary missions are remnant or extant prebiotic systems. The "biosignature threshold" between whether a chemical signature is more likely to be produced by abiotic versus biotic chemistry on a given world could vary significantly, depending on the particular environment, and could change over time, especially if life were to emerge and diversify on that world. To interpret organic signatures detected during a planetary mission, we advocate for (1) gaining a more complete understanding of prebiotic/abiotic chemical possibilities in diverse planetary environments and (2) involving experimental prebiotic samples as analogues when generating comparison libraries for "life-detection" mission instruments.


Assuntos
Meio Ambiente Extraterreno , Planeta Terra , Exobiologia , Planetas
7.
Astrobiology ; 21(8): 954-967, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34357788

RESUMO

As the exploration of Mars and other worlds for signs of life has increased, the need for a common nomenclature and consensus has become significantly important for proper identification of nonterrestrial/non-Earth biology, biogenic structures, and chemical processes generated from biological processes. The fact that Earth is our single data point for all life, diversity, and evolution means that there is an inherent bias toward life as we know it through our own planet's history. The search for life "as we don't know it" then brings this bias forward to decision-making regarding mission instruments and payloads. Understandably, this leads to several top-level scientific, theoretical, and philosophical questions regarding the definition of life and what it means for future life detection missions. How can we decide on how and where to detect known and unknown signs of life with a single biased data point? What features could act as universal biosignatures that support Darwinian evolution in the geological context of nonterrestrial time lines? The purpose of this article is to generate an improved nomenclature for terrestrial features that have mineral/microbial interactions within structures and to confirm which features can only exist from life (biotic), features that are modified by biological processes (biogenic), features that life does not affect (abiotic), and properties that can exist or not regardless of the presence of biology (abiogenic). These four categories are critical in understanding and deciphering future returned samples from Mars, signs of potential extinct/ancient and extant life on Mars, and in situ analyses from ocean worlds to distinguish and separate what physical structures and chemical patterns are due to life and which are not. Moreover, we discuss hypothetical detection and preservation environments for extant and extinct life, respectively. These proposed environments will take into account independent active and ancient in situ detection prospects by using previous planetary exploration studies and discuss the geobiological implications within an astrobiological context.


Assuntos
Meio Ambiente Extraterreno , Marte , Planeta Terra , Exobiologia , Geologia , Planetas
8.
Langmuir ; 36(21): 5793-5801, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32421344

RESUMO

Understanding the structure and behavior of chemical gardens is of interest for materials science, for understanding organic-mineral interactions, and for simulating geological mineral structures in hydrothermal systems on Earth and other worlds. Herein, we explored the effects of amino acids on inorganic chemical garden precipitate systems of iron chloride and sodium silicate to determine if/how the addition of organics can affect self-assembling morphologies or crystal growth. Amino acids affect chemical garden growth and morphology at the macro-scale and at the nanoscale. In this reaction system, the concentration of amino acid had a greater impact than the amino acid side chain, and increasing concentrations of organics caused structures to have smoother exteriors as amino acids accumulated on the outside surface. These results provide an example of how organic compounds can become incorporated into and influence the growth of inorganic self-organizing precipitates in far-from-equilibrium systems. Additionally, sample handing methods were developed to successfully image these delicate structures.

9.
Organometallics ; 37(16): 2716-2722, 2018 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-30174368

RESUMO

Herein, we report the synthesis and characterization of a new class of air- and moisture-stable phosphine-containing nickel(II) precatalysts, which activate through a Heck-type mechanism. The activities of the precatalysts are demonstrated with a carbonyl-ene coupling reaction.

10.
ChemCatChem ; 10(13): 2873-2877, 2018 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-30147804

RESUMO

Herein, we introduce a new class of bench-stable N-heterocyclic carbene (NHC) nickel-precatalysts for homogeneous nickel-catalysis. The nickel(II) complexes are readily activated to Ni0 in situ under mild conditions, via a proposed Heck-type mechanism. The precatalysts are shown to facilitate carbonyl-ene, hydroalkenylation, and amination reactions.

11.
Proc Natl Acad Sci U S A ; 115(23): E5298-E5306, 2018 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-29784819

RESUMO

Chemical methods have enabled the total synthesis of protein molecules of ever-increasing size and complexity. However, methods to engineer synthetic proteins comprising noncanonical amino acids have not kept pace, even though this capability would be a distinct advantage of the total synthesis approach to protein science. In this work, we report a platform for protein engineering based on the screening of synthetic one-bead one-compound protein libraries. Screening throughput approaching that of cell surface display was achieved by a combination of magnetic bead enrichment, flow cytometry analysis of on-bead screens, and high-throughput MS/MS-based sequencing of identified active compounds. Direct screening of a synthetic protein library by these methods resulted in the de novo discovery of mirror-image miniprotein-based binders to a ∼150-kDa protein target, a task that would be difficult or impossible by other means.


Assuntos
Técnicas de Química Combinatória/métodos , Biblioteca de Peptídeos , Engenharia de Proteínas/métodos , Proteínas/síntese química , Aminoácidos , Citometria de Fluxo/métodos , Humanos , Microesferas , Ligação Proteica , Proteínas/genética , Espectrometria de Massas em Tandem/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...